

Continuous statistical variables

Continuous variable

A continuous statistical variable is every quantitative (numerical) variable whose data may assume any value in an <u>interval</u>.

Example:

Classification of students according to their score on a math test over 20:

"resist" corresponds to a score in [0;10[

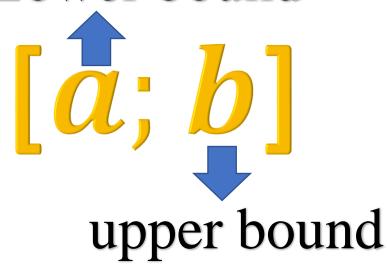
"Pass" corresponds to a score in [10;12[

"fair" corresponds to a score in [12;14[

"good" corresponds to a score in [14;1[

"very good" corresponds to a score in [16;18[

"Excellent" corresponds to a score in [18;20]


BSA

Recall (Interval)

Center (midpoint): $c = \frac{a+b}{2}$

width: l = b - a

Lower bound

How to organize the values into classes?

The marks of students on a math test over 20 are as following:

$$14 - 19 - 10 - 11 - 15 - 19 - 6 - 12 - 17 - 15$$

$$3 - 20 - 9 - 8 - 13 - 19 - 15 - 17 - 7 - 14$$

To group the data set into classes we need to choose k the number of classes needed, the width of classes is $l = \frac{\text{range}}{k}$.

In this case, all the classes have the same width that are called regular.

It is better that k divides the range so that the classes fit all the data set.

VACADEMY

The marks of students on a math test over 20 are as following:

$$14 - 19 - 10 - 11 - 15 - 19 - 6 - 12 - 17 - 15$$

$$3 - 19 - 9 - 8 - 13 - 19 - 15 - 17 - 7 - 14$$

k can be 2 of width 8, 4 of width 4, 8 of width 2.

Suppose that k=4, the classes are: [3;7[- [7;11[- [11;15[- [15;19]

Class	[3;7[[7;11[[11;15[[15;19]	N
n_i	2	4	5	9	20

Ro. Smast

The marks of students on a math test over 20 are as following:

$$14 - 19 - 10 - 11 - 15 - 19 - 6 - 12 - 17 - 15$$

 $3 - 19 - 9 - 8 - 13 - 19 - 15 - 17 - 7 - 14$

Remark:

Suppose that we choose a number of classes that doesn't divide the range.

Example k=3 that doesn't divide 16

$$\frac{16}{3} = 5.3333$$

It is better that the width I must be natural number.

Suppose l=5, the classes becomes: [3;8[- [8;12[- [12;17] in this case, the number of classes didn't fit all the data set, so increase the width: ex: l=6 [3;9[- [9;14[- [14;20] or increase the number of classes with same width: [3;8[- [8;12[- [12;17[- [17;22].

The marks of students on a math test over 20 are as following:

$$14 - 19 - 10 - 11 - 15 - 19 - 6 - 12 - 17 - 15$$

 $3 - 19 - 9 - 8 - 13 - 19 - 15 - 17 - 7 - 14$

There is another method to group data in classes that is more precise:

Instead of choosing the number of classes, determine the best number of classes: k is the first natural number verifying $2^k \ge N$ where N is the size of the population.

$$N = 20$$
 $2^{1} = 2 < 20$
 $2^{2} = 4 < 20$
 $2^{3} = 8 < 20$
 $2^{4} = 16 < 20$
 $2^{5} = 32 > 20$ so

Be Smart ACADEMY

The marks of students on a math test over 20 are as following:

$$14 - 19 - 10 - 11 - 15 - 19 - 6 - 12 - 17 - 15$$

$$3 - 19 - 9 - 8 - 13 - 19 - 15 - 17 - 7 - 14$$

Calculate the width of the classes:

l is the first natural number verifying $l \ge \frac{\text{Range}}{k}$

$$\frac{range}{k} = \frac{16}{5} = 3.2$$
 so 1=4

Class	[3;7[[7;11[[11;15[[15;19[[19;23]	N
n_i	2	4	5	5	4	20

Relative frequency

Class	[3;7[[7;11[[11;15[[15;19[[19;23]	N
n_i	2	4	5	5	4	20
f_i	$\frac{\frac{2}{20}}{0.1}$	$\frac{4}{20} = 0.2$	$\frac{5}{20} = 0.25$	0.25	0.2	1
% = f _i × 100	10	20	25	25	20	100

VACADEMY

Increasing/Decreasing frequency

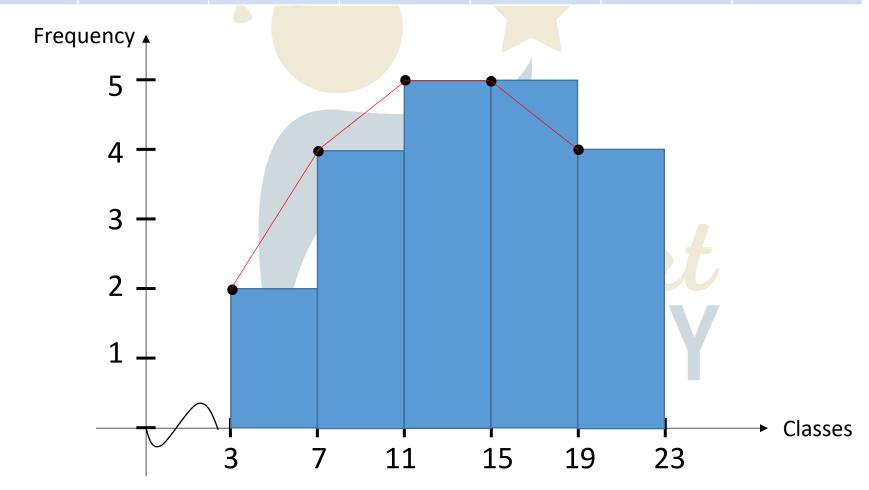
Class	[3;7[[7;11[[11;15[[15;19[[19;23]	N
n_i	2	4	5	5	4	20
ICF	2	6	11	16	20	
DCF	20	18	14	9	4	

Be Smart ACADEMY

Relative Increasing/Decreasing frequency

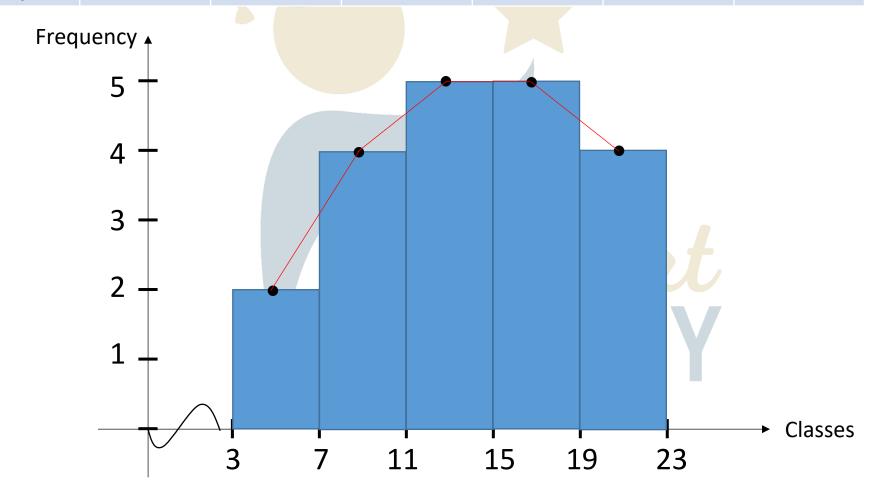
Class	[3;7[[7;11[[11;15[[15;19[[19;23]	N
n_i	2	4	5	5	4	20

First method

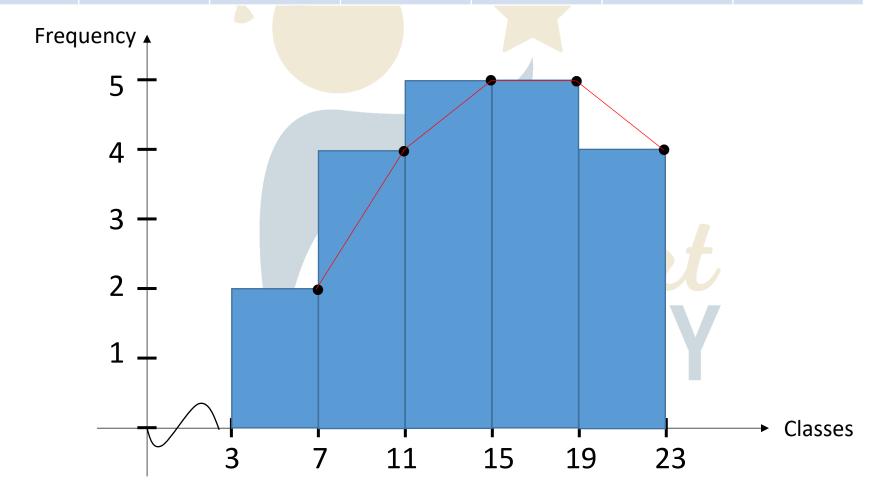

	ICF	2	6	11	16	20	
	ICRF	$\frac{\frac{2}{20}}{0.1}$	$\frac{6}{20} = 0.3$	$\frac{11}{20} = 0.55$	$\frac{16}{20} = 0.8$	$\frac{20}{20}=1$	
1(d method	1					

Second method

f_i	$\frac{2}{20} = 0.1$	$\frac{4}{20} = 0.2$	$\frac{5}{20} = 0.25$	0.25	0.2	1
			0.55		1	


Graphical representation(Histogram+polygon)

Class	[3;7[[7;11[[11;15[[15;19[[19;23]	N
n_i	2	4	5	5	4	20


Graphical representation(Histogram+polygon)

Class	[3;7[[7;11[[11;15[[15;19[[19;23]	N
n_i	2	4	5	5	4	20

Graphical representation(Histogram+polygon)

Class	[3;7[[7;11[[11;15[[15;19[[19;23]	N
n_i	2	4	5	5	4	20

